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Abstract. As the most important input for rainfall-runoff models, precipitation is usually observed at specific sites on a daily or

sub-daily time scale and requires interpolation for further application. This study aims to explore that for a given objective func-

tion, whether a higher temporal and spatial resolution of precipitation could provide an improvement in model performance.

Four different gridded hourly and daily precipitation datasets, with a spatial resolution of 1×1 km2 for the Baden-Württemberg

state of Germany, were constructed using a combination of data from a dense network of daily rainfall stations and a less dense5

network of pluviometers with high temporal-resolution rainfall observations. Two different flavors of HBV models with dif-

ferent model structures, lumped and spatially distributed, were used to test the sensitivity of model performance on the spatial

resolution of precipitation. For four selected mesoscale catchments located at the upstream region of Baden-Württemberg,

these four precipitation datasets were used to simulate the daily discharges using both lumped and semi-distributed HBV mod-

els. Different possibilities of improving the accuracy of daily streamflow prediction were investigated. Three main results were10

obtained from this study: (1) a higher temporal resolution of precipitation improved the model performance if the observation

density was high; (2) a combination of observed high temporal-resolution observations with disaggregated daily precipita-

tion leads to a further improvement in the model performance; (3) for the present research, the increase of spatial resolution

improved the performance of the model insubstantially or only marginally for most of the study catchments.

1 Introduction15

Conceptual hydrological models have been developed to represent dynamic response of a particular catchment resulting from

meteorological driving forces (Hundecha et al., 2008). Among meteorological variables, precipitation, which is traditionally

measured using rain gauges, has a direct and crucial impact on the runoff response of a catchment (Obled et al., 1994; Ly

et al., 2013). However, uncertainty in capturing the variability of precipitation by the rain gauges or wireless telemetering

constitutes a significant source of uncertainty for hydrological modeling (Berne et al., 2004). Previous studies have shown that20

hydrological models are sensitive to the observation network density and data quality (Singh, 1997; Kobold and Brilly, 2006;

Bardossy and Das, 2008; Xu et al., 2013). Therefore, the precipitation input should be as accurate as possible to achieve better

rainfall-runoff simulation and model parameter estimation (Cole and Moore, 2008; Ficchi et al., 2016).
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Many research efforts have been carried out in the recent years for interpolating spatially distributed rainfall datasets

(Goovaerts, 2000; Jeffrey et al., 2001; Hofierka et al., 2002; Haylock et al., 2008; Ly et al., 2013), as well as for the sub-

daily disaggregation of daily rainfall (Parkes et al., 2013; Bardossy and Pegram, 2016). These approaches can potentially

improve the quality and resolution of the precipitation data that are used as input for rainfall-runoff models, thereby reducing

the uncertainty of hydrological models. By design, most of the hydrological models are flexible and can be easily adjusted to5

different time steps of input datasets. Hydrological models are normally classified as lumped or distributed, depending on the

degree of spatial discretization when describing the catchment (Ly et al., 2013). Bruneau et al. (1995) indicated the temporal

and spatial resolutions used for the inputs of the hydrological model have an important influence on the model performance.

Kobold and Brilly (2006) suggested that calibrating hydrological models with sub-daily time steps can significant improve

flood forecasting. Das et al. (2008) used different model structures to simulate daily runoff in the region of central Europe and10

showed that semi-distributed model structure could outperform lumped model structure.

The aim of this study is to gain knowledge on the dependency of hydrological model performance on the precipitation

data. The effects of rainfall data quality on model performance were investigated. The sensitivity of model performance to

different spatial and temporal resolutions of rainfall data was examined using two different model structures. The possibility of

improving model performance on daily scale was discussed. The manuscript is organized as follows: the introduction, followed15

by section 2, which describes the study area and the precipitation datasets used in this research. In section 3, the hydrological

model and the calibration framework used in this research are explained, while section 4 presents the results and discussion of

this work. The conclusions and outlook are provided in section 5.

2 Study area and hydrometeorological datasets

This study was tested in a semi-humid region in the Baden-Württemberg state of Germany (Figure 1) that characterized by20

temperate monsoon climate. Elevations of this state range from 85 m to 1 493 m above sea level. The heterogeneity of climate

characteristics is mainly due to the great variability of elevations within the study area. Winters are mild whereas summers are

warmer. The annual mean air temperature in Baden-Württemberg is about 10.2 °C. Precipitation is evenly distributed through

the year. However, its seasonality shows a weak trend. The monthly rainfall reaches its peak in June, whereas the month of

October shows the least precipitation amount.25

The meteorological observations used in this study was provided by the German Weather Service (DWD). Daily air temper-

ature required for the rainfall-runoff model was interpolated on a 1×1 km2 grid from the observations using the algorithm of

External Drift Kriging (Ahmed and De Marsily, 1987). The topographical elevation was taken as external drift (Hundecha and

Bárdossy, 2004; Das et al., 2008). The long term monthly potential evapotranspiration and the average air temperature were

used to compute the daily potential evapotranspiration using the Hargreaves and Samani method (Hargreaves and Samani,30

1985).

Precipitation data from a dense network of daily precipitation stations (62 km2/station in 1991) and from a less dense

network of pluviometers (144 km2/station in 1991) with high resolution precipitation observations were used for this study. All
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available data from the time period 1991-2010 was considered. The number of available daily stations and pluviometers varies

according to different time period. Figure 2 illustrates the number of available observation locations in Baden-Württemberg

between the years 1991 and 2010. It can be seen from the graph, more than 430 daily stations were available in 1991, while

only 30 pluviometers. The total number of daily stations decreased dramatically to 250 around 2003 and remained constant

for the subsequent years. The number of pluviometers kept increasing throughout the whole period and experienced a sharp5

increase from 100 to 200 in the year 2005.

The following different precipitation datasets were created according to the available observed data:

1. High resolution observed precipitation was aggregated to hourly time steps and interpolated subsequently to a 1×1 km2

grid using the ordinary Kriging (Matheron, 1963). The correlation function obtained from the cross-correlations of the

hourly time series was used as a basis for the variogram. This set will be referred as Sparse Hourly (SH) set.10

2. Observed daily precipitation combined with the daily aggregations of the high temporal resolution data were used to

create a 1×1 km2 gridded datasets using the ordinary Kriging. The variogram was based on the cross-correlations of the

daily time series. This set will be referred as Dense Daily (DD) set.

3. High resolution precipitation was aggregated to daily time steps and interpolated subsequently for a 1×1 km2 grid using

the ordinary Kriging. The variogram was based on the cross-correlations of the aggregated daily time series. This set15

will be referred as Sparse Daily (SD) set.

4. Observed daily precipitation combined with the hourly aggregations of the high temporal resolution data were used to

create a 1×1 km2 grid using the disaggregation method rescaled ordinary Kriging (Bárdossy and Pegram, 2016). The

variogram was based on the cross-correlations of the hourly time series. This set is denoted as Dense Hourly (DH) set.

Figure 3 illustrates the frame of these four different datasets. The DD and SD sets are practically the daily aggregations of the20

DH and SH sets. Note that DH is a dataset combining hourly observations and artificially disaggregated daily data. One of the

research questions raised here is to find out if a disaggregation leads to an improvement of model performance. Comparisons

of the model performances on the pairs of (SD, SH) and (DD, DH) provide information on the effect of temporal resolution.

While comparisons between (SD, DD) and (SH, DH), provide information on the influence of the rainfall observation network

density.25

Four mesoscale catchments (Figure 1), namely Rottweil, Schwaibach, Pforzheim and Kocherstetten, were selected from

the upstream region for testing the sensitivity of model performance to different rainfall datasets as described previously. The

daily streamflow record of these catchments was collected for the period 1991- 2010. The basic characteristics for the study

catchments are listed in Table 1.
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3 Model and methodology

3.1 Model structure

The conceptual HBV model was introduced in the 1970s at the Swedish Meteorological and Hydrological Institute (SMHI)

(Bergström and Forsman, 1973). Due to its simplicity, low demand of inputs and few model parameters, HBV model has been a

preferred model for rainfall-runoff simulation and flood forecasting. Figure 4 represents the structure diagram of HBV model5

(Singh, 2010). In general, three main modules are included in HBV model, namely snow routine, soil moisture routine and

runoff routine (Hartmann, 2007; Singh, 2010).

First of all, the snow accumulation and melt process is estimated by the relatively simple degree-day method (Rango and

Martinec, 1995) using two parameters: degree day factor (DD) and threshold temperature for snow/rain (TT) (as shown in

Equation 1). In this method, the measured precipitation is supposed to be solid (snowfall) if the air temperature is lower than10

the threshold temperature, otherwise, precipitation appears liquid state (rainfall) if the weather is warmer than the threshold

value.

Snowmelt=DD · (T −TT ), if T > TT (1)

In HBV model, soil moisture storage is decided by balancing rainfall and evapotranspiration according to two soil moisture

constants: permanent wilting point (PWP) and field capacity (FC). The soil wetness index, which is represented by the ratio of15

direct runoff to effective precipitation ( ∆Q
∆P ) can be estimated by:

∆Q
∆P

= (
SM

FC
)Beta (2)

where SM denotes the actual soil moisture and Beta determines the proportion of effective precipitation contributing to runoff

at a given soil moisture state. The approach of Penman equation is used to estimate the potential evapotranspiration according

to the long-term monthly mean air temperature (TM ) and long-term monthly average potential evapotranspiration (PEM )20

(Penman, 1948):

Etp = (1 +C(T −TM ))PEM (3)

Here C is the evapotranspiration coefficient. The actual evapotranspiration (Eta) can be estimated as follow:

Eta =




Etp if SM > PWP

SM
PWP ·Etp else

(4)

As shown in Equation 2, runoff response routine is calculated by a non-linear function based on excessive effective precipitation25

and actual soil moisture. The runoff concentration process consists upper and lower reservoirs with five free parameters:

Q0 =K0(S1 −HL) (5)
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Q1 =K1S1 (6)

Qd =KdS1 (7)

5

Q2 =K2S2 (8)

The runoff is divided into surface flow (Q0), interflow (Q1) and baseflow (Q2) with three recession coefficients K0, K1 and

K2, along with a conceptual threshold water level (HL) for generating surface flow. The two parallel reservoirs are connected

in the form of percolation storage (Qd) from upper reservoir to the lower one with the parameter of percolation constant Kd.

Finally, a transformation function approach with the triangular weighting parameter MAXBAS is used to smooth the generated10

total runoff (Q0 +Q1 +Q2) to obtain discharge at the outlet.

In this study, for investigating the sensitivity of model performance on the spatial resolution of input variables, two HBV

models with different levels of complexity were applied: lumped HBV and spatially distributed HBV, respectively. In the

lumped model, precipitation, temperature and potential evapotranspiration were supposed to be equally distributed among the

catchment and all the processes were calculated for the whole catchment. Previous studies have indicated that the altitude is15

an important reason for the spatial differentiation of meteorological elements, such as temperature, precipitation, evapotran-

spiration and snow melt. Therefore, the spatially distributed HBV model was constructed to separated the whole catchment

into several zones based on topographic elevation. The 1×1 km2 grid based precipitation and temperature data were computed

averagely according to elevation zone and used as inputs for model simulation. In the spatially distributed model, the snowmelt

and soil moisture modules related parameters can be adjusted differently for each elevation zone. The parameters controlling20

the runoff response processes were estimated for the whole catchment similarly to the lumped model (Das et al., 2008).

There are 15 parameters describing the HBV model, where only 9 parameters were selected for calibration in this study.

Table 2 lists the initial upper and lower limit of parameters that will be optimized by model calibration using historical data.

The data depth based parameter optimization method-Robust Parameter Estimation (ROPE) algorithm (Bárdossy and Singh,

2008) was applied for model parameter identification. The ROPE approach could lead to a certain number of model parameters25

with ideal model performance (Bárdossy et al., 2016). For this study, each simulation results in 10 000 heterogeneous parameter

sets with similar and good model performance.

3.2 Performance criteria

In this study, the Nash-Sutcliffe (NS) efficiency coefficient (Nash and Sutcliffe, 1970) between the observed and simulated

streamflow was used to access the model performance:30

NS = 1−
∑T

t=1 (Qo(t)−Qm(t))2

∑T
t=1

(
Qo(t)− Q̄o

)2 (9)
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where Qo(t) and Qm(t) are the observed and simulated discharges respectively and Q̄o is the mean of observed discharge

series.

Meanwhile, the Mean Square Error (MSE) of the flow for the time period that the observed discharge is greater than or equal

to 90% high flow value was calculated to assess the flood forecasting ability of the models:

MSE =
1
n

n∑

i=1

(Q0(i)−Qm(i))2 (10)5

Here Qo(i) and Qm(i) are the observed and modeled discharges when the observed discharge is greater than or equal to

90% high flow value.

3.3 Model calibration experiments

A split sample calibration methodology has been applied in this study to separate the whole data series into two equal periods:

1991-2000 and 2001-2010. Model calibration was carried out for both time periods and a cross-validation analysis was per-10

formed as well. For each calibration run, the first water year data was used as warm-up period to reduce initial errors and was

not used to evaluate the model performance.

In this study we investigated the impacts of using different methods for spatial interpolation of hourly rainfall data on model

performance. The four rainfall datasets were assigned as input variables for model calibration and validation. We also assessed

the effects of the temporal and spatial resolutions of the inputs on the model performance in terms of Nash-Sutcliffe efficiency15

and the mean square error of the high flow. We conducted experiments of model calibration for a lumped and a spatially

distributed HBV model using hourly and daily input variables, respectively. For the spatially distributed model structure, a

contour interval of 100 m was taken to divide the whole study catchment into several elevation zones. Note that all the model

calibrations were performed on the basis of simulating daily discharge. Due to the limitation of observed temperature, air

temperature and potential evapotranspiration were assumed to be constant over the whole day.20

We also wonder if the combination of daily scale model and hourly scale model leads to a better prediction in streamflow.

It is interesting to investigate the similarities of different temporal resolution. Therefore, the common calibration tragedy was

proposed in this study to calibrate the daily scale model and hourly scale model simultaneously. This kind of approach is ex-

pected to identify robust model parameters for the application of model in different temporal resolutions. Common calibration

approach is a multi-objective optimization function and the compromise programming method (Zeleny, 1981) was used to25

formulate the objective function:

O(θ) =
n∑

i=1

(NS∗i −NSi(θ))p (11)

Here index i indicates the type of temporal resolution,NS∗i means the optimal model performance which can be represented by

the individual calibrated model performance. Here we aim to minimize the value of objective function O(θ). For the balancing

factor p, a moderately high p= 4 was given in this study. More details about the common calibration of hydrological models30

strategy can be found in Bárdossy et al. (2016).
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4 Results and discussion

4.1 Comparison of the rainfall datasets

Firstly, the quality of the rainfall products was assessed and compared for four selected catchments. As the SD and DD sets

are the daily aggregations of the SH and DH sets, here we only compared the daily precipitation sets SD and DD for both

calibration decades (Figure 5). It can be seen clearly from the figures that the interpolated precipitation datasets display some5

difference for all study catchments. The asymmetry of the scatterplots is fairly obvious for the first decade (1991-2000). In

general, the DD dataset leads to higher value than the SD dataset. The reason behind this is mainly because the low density

of pluviometers observations during the period of 1991-2000 leads to big errors in the spatial interpolation of rainfall. This

is especially the case for Schwaibach catchment which varies strongly in geographical elevation (from 190 m a.s.l. to 1028

m a.s.l.). For the period 2001-2010, the SD and DD sets become similar in magnitude along with the increasing of available10

sub-daily observations.

4.2 Calibration and validation model performance

As designed in section 3.3, for the selected catchments, model calibrations were carried out using four rainfall datasets for

both lumped and spatially distributed HBV models. Data series from 1991 to 2010 were average split into two sub-periods

for calibration and cross-validation. This leads to 16 calibration runs and 16 validation runs for every catchment. As mention15

before, each simulation could obtain10 000 parameter sets with similar model performance. To make it simple, we took the

mean value of the corresponding 10 000 model performances to represent the model efficiency.

Table 3 lists the average value of the NS model performance for the four selected catchments using lumped HBV model and

Table 4 lists the simulated NS performance for spatially distributed version of the model, respectively. The results show that

all four datasets can reproduce relatively accurate historical daily streamflow series for all selected catchments. Results also20

indicate that the model performances vary across catchments. The Kocherstetten catchment generally performs the best with

an average NS value of 0.84 for all simulations, while the Pforzheim catchment has the worst mean NS performance of 0.58

for all calibration runs. Moreover, for a specific catchment, the calibrated model performances for different data periods are

also different. For the Schwaibach and Pforzheim catchments, the calibrated model performance for the time period 2001-2010

is obviously better than the performance for the time period 1991-2000 for most of the datasets. This might be due to the25

increasing of the raingauge density inside or nearby the catchment and the quality of rainfall data with the development of

time and technological progress. In particular, the model calibrations for the period 1991-2000 of the Schwaibach catchment

using the sets SH and SD perform very weak for both calibration and validation; the loss in NS coefficient is about 0.3 when

compared to the corresponding results of the sets DH and DD. This indicates that systematic interpolated precipitation errors

have critical influence on model calibration.30

The flexibility of model in flood prediction is analyzed with the behavior of high flow. Tables 5 and 6 list the mean square

error of 90% high flow for lumped model and spatially distributed model, respectively. Figure 6 shows the flow duration curve

for the natural logarithm of simulated and observed discharge for all study catchment for the years between 2001 and 2010.
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Results indicate obviously that for most of the calibration runs, the set DH performs the best for the high flow, followed by set

SH, set DD performs a little weaker than set SH, while set SD has the worst performance in the flood simulation.

4.3 Comparison of the performance corresponding to the temporal resolution

Firstly, the model performance of different temporal resolution was compared for all datasets and model structures. For the

pairwise comparison, all the conditions are the same in the model except for the temporal resolution of input variables (hourly5

and daily). The results of the sparse sets and dense sets are separated here. Figure 7 compares the model performance of using

hourly and daily rainfall variables as model input for the precipitation sets that were interpolated using only high-resolution

precipitation observations (SH, SD). Figure 8 compares the corresponding results for the rainfall datasets that incorporated

observed daily value with high-resolution observations (DH, DD). The result shows that all the scatters are laying below the

diagonal for the different level of observation density. For both calibration and validation periods, the simulations using hourly10

data as model input outperform the one that based on the daily resolution. For the dataset with low observation network density,

the average NS value of set SH is about 0.73 for calibration period and 0.68 for validation period, while the mean NS coefficient

that was calibrated using SD set is 0.67 and 0.6, respectively. The higher observation density datasets show a similar tendency.

The mean NS value of using DH set is around 0.79 for calibration and 0.77 for validation, while the result of set DD is 0.72 and

0.69, respectively. The hourly scale model performs better than the daily model indicating that the dynamic runoff of catchment15

could be better simulated with a higher temporal resolution of input variables. According to the distances from the diagonal

to the scatterplots, we could find that the difference in model performance for different temporal resolution is larger for the

catchments with relatively low NS model performance, such as Schwaibach and Pforzheim. For Rottweil and Kocherstetten,

the model performance of hourly calibrated model is only slightly better than the daily based model.

4.4 Comparison of the performance corresponding to observation density20

Results also indicate that rainfall data network density has significant impact on model simulation and parameter optimization.

Figure 9 plots the simulated NS coefficient for the daily datasets that was interpolated using different density of rainfall obser-

vation network. It shows obviously from the location of points that the simulated model performance of DD set is generally

better than the result of SD set for both calibration and validation periods. The average NS model performance of DD set over

all simulations is about 0.71 while the value for SD set is 0.64. The model performance for the hourly based simulation shows25

similar trend as the model performance for the daily time step. As shown in Figure 10, the model calibration of DH set outper-

form the result of SH set. The results demonstrate that the high observation density could lead to considerable improvement of

model performance for both daily and hourly time scales.

Figure 11 illustrates the cumulative distribution function of NS model performance using sets SD, SH and DH for model

calibration (left) and validation (right). As can be seen clearly from the curves, if precipitation data comes from a sparse network30

of pluviometers, higher temporal resolution datasets (as represented by set SH) can achieve better model performance than the

lower ones (as represented by set SD). Decreasing the length of time step in model simulation could provide a better fit of daily
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streamflow. In addition, the combination of observed high-resolution observations with disaggregated daily precipitation (as

represented by set DH) leads to a further improvement of daily streamflow prediction.

4.5 Comparison of the performance corresponding to the spatial resolution

The performance of different model structures in terms of different spatial resolutions was assessed by comparing performance

for lumped HBV model and spatially distributed HBV model. Figure 12 compares the NS model performance for these two5

model structures for calibration (left) and validation (right) periods. The correlation between model performance and the spa-

tial resolution of model seems not clear for the study catchments. For some simulations, the elevation zone based spatially

distributed models outperform the lumped ones, especially for the catchments having high NS coefficient. Despite the increase

in model performance being only marginal. However, for the catchments with relatively weak model performance, the lumped

model could even lead to slightly better performance than the semi-distributed model structure, especially for the validation10

period that the difference seems larger than the calibration period. It indicates that for model validation, the model param-

eters estimated by distributed HBV model shows weaker transferability. Possible explanation for this case could be that the

distributed model structure raises the number of parameters to be identified and the parameters are underestimated during the

calibration period. We can conclude from this comparison that the improvement in spatial resolution of model structure did

not clearly enhance the model performance. However, it is surprising since we expected a better model performance with a15

higher spatial resolution of model and a complicated set of parameters. The results support the findings of Das et al. (2008)

that distributed model structures does not significantly improve model performance.

The complex structure version of model did not perform better than the lumped model incurrent research. This might be due

to the lack of underlying surface information and the calibration procedure was not enough for the identification of distributed

model parameters. A second explanation could be that the temporal resolution of the force inputs is not sufficient for distributed20

model structure.

4.6 Common calibration of models with different temporal resolutions

As shown before, the combination of hourly observations and daily observations lead to the improvement of data quality as the

sets DH and DD show better model performance than the sets SH and SD. Furthermore, common calibration of lumped HBV

model was performed for the sets DH and DD to identify model parameters good for both hourly and daily time steps. It is25

important to note that the value of time step dependent parameters (DD,K0,K1,Kd andK2) should be converted according to

the temporal resolution of model. The common calibration was performed for two decades separately, and the cross-validation

analysis was performed as well. The common calibration and validation results were compared with the individual calibration

cases (Figure 13). For the calibration period, the common calibration always leads to slightly weaker performance for all

datasets. For three of the DD datasets, model performances of common parameters are rather similar to individual calibration30

results. The average loss of NS model performance over all catchments is about 0.02 for set DH and 0.01 for set DD. For the

validation period, from the scatterplots, it is clearly seen that the common parameters outperform the individual ones for about

half of the all simulations. It indicates that common calibrated parameters based on different time steps could be a feasible
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approach for increasing the temporal transferability of models. The reason for the robustness of common parameters might be

that common calibration tragedy could provide more information for identifying model parameters.

The calibrated model parameters using daily precipitation, hourly precipitation and common calibration tragedy were also

compared in this study. Figure 14 and Figure 15 show the distribution of the optimized model parameters for Rottweil and

Pforzheim, respectively. Note that all the parameter values have been normalized by the initial range that listed in Table 2.5

Form the box plots we could find that some model parameters, especially the shape factor (Beta) and the threshold water level

for surface runoff (L), strongly depend on the selected precipitation dataset.

5 Conclusions and outlook

This paper investigated the impact of the observed precipitation data in model simulation and parameter estimation. The sensi-

tively of model performance to different temporal and spatial resolutions of input variables were also tested in this study. Two10

different model structure, lumped and spatially distributed HBV models, were used to simulate daily runoff using precipitation

data sets with different time resolutions and interpolated using different observation network density. The models were applied

to four upstream catchments using NS coefficient as objective function and the mean square error for the high flow was also

assessed. The common calibration scenario was proposed to calibrate the model with different time scale simultaneously to

provide robust model parameters.15

The calibration results indicate that rainfall data quality has a significant impact on model performance. Interpolation of

hourly precipitation using disaggregated daily value as additional information could potentially enhances the quality of the

data and reduces the uncertainty of the model inputs. The result shows that higher temporal resolution could significantly

improved the model performance if the observation density was high. A combination of observed high-resolution observations

with disaggregated daily precipitation leads to a further improvement. For the present study, the lumped and spatial distributed20

model structures perform very similar indicating that higher model resolution does not or only marginally improve the model

performance.

A great amounts of efforts had been made to improve the performance of rainfall-runoff model in recent years. The results

of this study suggested that higher temporal resolution of inputs always outperform the lower ones, an effective data disaggre-

gation could lead to an improvement of the model performance. Results also indicated that higher spatial resolution of model,25

which cause the complexity of model structure and parameters, do not always enhance the model performance. Compared

with the idea of increasing the spatial resolution by distributed model, increasing the temporal resolution of model inputs by

disaggregation method could be an easier and much lower cost way to improve model performance.

In this study, all the hourly model outputs were aggregated into daily and only the daily streamflow was involved in the

evaluation of model performance. As the daily-based rainfall-runoff response of a catchment is mostly dominated by rainfall30

amount and actual evapotranspiration, we believe that the variability in precipitation have rather strong impacts on the smaller

temporal scales, such as the hourly response of discharge. Meanwhile, in the spatially distributed model, the subcatchments

were separated only based on the topographic elevation, which might be not enough to represent the full spatial variability.
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Moreover, the impacts of precipitation to the hourly response and the full distributed model structure could be considered as

the next phase of work.
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Table 1. Catchment characteristics for the 4 selected catchments.

No. Streamgauge Longitude Latitude Area Elevation Annual Average Annual

name (oE) (oN) (km2) (m) precipitation (mm) temperature (oC) runoff (mm)

1 Rottweil, Neck 8.38 48.10 455 555-1010 929.0 9.7 363.2

2 Schwaibach,Kinzig 8.02 48.24 955 190-1028 1331.8 9.7 757.3

3 Pforzheim,Würm 8.43 48.52 417 357-583 761.7 9.3 232.9

4 Kocherstetten, Kocher 9.45 49.16 1288 292-698 930.6 9.4 401.6
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Table 2. Description of HBV model parameters and parameter ranges for model calibration.

Parameter Description Max Min

TT Threshold temperature for snow melt initiation (0C) 2 -2

DD Degree-day factor 3 1.5

FC Field capacity (mm) 600 50

Beta Shape coefficient 8 0.2

HL Threshold water level for near surface flow (mm) 100 1

K0 Near surface flow storage constant 0.8 0.2

K1 Interflow storage constant 0.25 0.1

Kd Percolation storage constant 0.2 0.05

K2 Baseflow storage constant 0.1 0.01
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Table 3. Average NS model performance for the lumped HBV model.

Catchment
Precipitation Calibration for Calibration for Validation for Validation for

data set 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 0.71 0.71 0.65 0.65

DH 0.79 0.73 0.73 0.68

SD 0.61 0.61 0.56 0.55

DD 0.67 0.63 0.63 0.59

Schwaibach

SH 0.60 0.88 0.52 0.72

DH 0.89 0.88 0.88 0.87

SD 0.57 0.85 0.49 0.68

DD 0.84 0.86 0.83 0.83

Pforzheim

SH 0.61 0.69 0.60 0.65

DH 0.63 0.69 0.63 0.67

SD 0.48 0.60 0.46 0.56

DD 0.48 0.60 0.49 0.57

Kocherstetten

SH 0.88 0.85 0.86 0.84

DH 0.89 0.85 0.87 0.84

SD 0.84 0.84 0.81 0.79

DD 0.84 0.83 0.81 0.81
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Table 4. Average NS model performance for the distributed HBV model.

Catchment
Precipitation Calibration for Calibration for Validation for Validation for

data set 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 0.70 0.68 0.63 0.55

DH 0.80 0.69 0.74 0.66

SD 0.61 0.59 0.54 0.46

DD 0.68 0.60 0.63 0.57

Schwaibach

SH 0.59 0.88 0.50 0.76

DH 0.90 0.88 0.88 0.87

SD 0.55 0.86 0.47 0.72

DD 0.85 0.86 0.84 0.85

Pforzheim

SH 0.55 0.68 0.55 0.64

DH 0.59 0.67 0.59 0.64

SD 0.42 0.58 0.41 0.54

DD 0.45 0.58 0.46 0.54

Kocherstetten

SH 0.88 0.86 0.86 0.84

DH 0.89 0.86 0.87 0.84

SD 0.84 0.84 0.82 0.80

DD 0.84 0.84 0.82 0.81
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Table 5. Mean square error of the 90% high flow for the lumped HBV model.

Catchment
Precipitation Calibration for Calibration for Validation for Validation for

data set 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 83.1 74.6 118.7 83.5

DH 55.1 69.8 82.4 84.7

SD 120.0 104.5 151.4 108.5

DD 101.7 98.9 120.0 110.1

Schwaibach

SH 2511.4 338.6 3214.9 663.6

DH 565.4 324.4 722.7 328.2

SD 2739.9 401.1 3423.0 805.7

DD 916.0 389.2 1048.1 448.2

Pforzheim

SH 11.8 7.3 12.4 8.3

DH 11.2 6.9 11.8 7.3

SD 19.1 10.6 19.6 12.0

DD 18.9 10.3 19.5 10.9

Kocherstetten

SH 438.9 457.5 545.5 558.7

DH 288.5 439.3 350.5 518.8

SD 651.9 551.9 801.9 760.4

DD 556.0 544.1 665.0 701.3

18

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-469
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 22 October 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 6. Mean square error of the 90% high flow for the distributed HBV model.

Catchment
Precipitation Calibration for Calibration for Validation for Validation for

data set 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 89.0 86.8 127.8 120.1

DH 56.5 85.2 80.1 95.0

SD 121.0 113.6 161.4 144.5

DD 100.6 111.5 119.6 121.9

Schwaibach

SH 2657.1 326.9 3330.8 527.1

DH 526.1 311.4 680.7 317.7

SD 2869.6 387.9 3546.7 681.5

DD 892.8 376.5 983.2 405.9

Pforzheim

SH 12.5 7.1 12.7 8.1

DH 11.9 6.7 12.4 7.2

SD 19.6 10.3 19.7 11.5

DD 19.5 9.9 19.6 10.6

Kocherstetten

SH 425.7 455.1 541.2 551.5

DH 293.5 429.1 355.3 515.1

SD 633.3 552.0 778.6 727.3

DD 542.4 540.8 637.0 670.9
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Figure 1. Locations of the pluviometers(hourly) and daily rain gauges in Baden-Württemberg and the four selected catchments.
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Figure 2. The number of available observation locations. Daily stations - solid line, pluviometers - dashed line.
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Figure 3. Schematic representation of four different precipitation data sets.
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Figure 4. Schematic representation of HBV model.
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Figure 5. Comparison of the daily precipitation data that interpolated using different observation network density.
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Figure 6. Comparison of the simulated flow duration curve.
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Figure 7. Comparison of NS model performance for using hourly and daily variables as model input for the SH and SD sets.
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Figure 8. Comparison of NS model performance for using hourly and daily variables as model input for the DH and DD sets.
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Figure 9. Comparison of model performance for different density of rainfall observation network, models were simulated based on daily

time step.
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Figure 10. Comparison of model performance for different density of rainfall observation network, models were simulated based on hourly

time step.
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Figure 11. Cumulative distribution of NS coefficient for model calibration using different precipitation datasets .
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Figure 12. Comparison of model performance for different spatial resolution of model structure.
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Figure 13. Comparison of model performance for individual calibration and common calibration for different temporal resolution datasets.
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Figure 14. Comparison of model parameters for different temporal resolution for Rottweil catchment.
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Figure 15. Comparison of model parameters for different temporal resolution for Pforzheim catchment.
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